Results 901-1000 of 2703 (2642 ASCL, 61 submitted)

[ascl:1702.006]
GalaxyGAN: Generative Adversarial Networks for recovery of galaxy features

GalaxyGAN uses Generative Adversarial Networks to reliably recover features in images of galaxies. The package uses machine learning to train on higher quality data and learns to recover detailed features such as galaxy morphology by effectively building priors. This method opens up the possibility of recovering more information from existing and future imaging data.

[ascl:1812.009]
galclassify: Stellar classifications using a galactic population synthesis model

The stellar classification code galclassify is a stand-alone version of Galaxia (ascl:1101.007). It classifies and generates a synthetic population for each star using input containing observables in a fixed format rather than using a precomputed population over a large field. It is suitable for individual stellar classifications, but slow if you want to classify large samples of stars.

[ascl:1010.033]
GALEV Evolutionary Synthesis Models

GALEV evolutionary synthesis models describe the evolution of stellar populations in general, of star clusters as well as of galaxies, both in terms of resolved stellar populations and of integrated light properties over cosmological timescales of > 13 Gyr from the onset of star formation shortly after the Big Bang until today.

For galaxies, GALEV includes a simultaneous treatment of the chemical evolution of the gas and the spectral evolution of the stellar content, allowing for a chemically consistent treatment using input physics (stellar evolutionary tracks, stellar yields and model atmospheres) for a large range of metallicities and consistently account for the increasing initial abundances of successive stellar generations.

[ascl:1810.001]
galfast: Milky Way mock catalog generator

galfast generates catalogs for arbitrary, user-supplied Milky Way models, including empirically derived ones. The built-in model set is based on fits to SDSS stellar observations over 8000 deg^{2} of the sky and includes a three-dimensional dust distribution map. Because of the capability to use empirically derived models, galfast typically produces closer matches to the actual observed counts and color-magnitude diagrams. In particular, galfast-generated catalogs are used to derive the stellar component of “Universe Model” catalogs used by the LSST Project. A key distinguishing characteristic of galfast is its speed. Galfast uses the GPU (with kernels written in NVIDIA C/C++ for CUDA) to offload compute intensive model sampling computations to the GPU, enabling the generation of realistic catalogs to full LSST depth in hours (instead of days or weeks), making it possible to study proposed science cases with high precision.

[ascl:1104.010]
GALFIT: Detailed Structural Decomposition of Galaxy Images

GALFIT is a two-dimensional (2-D) fitting algorithm designed to extract structural components from galaxy images, with emphasis on closely modeling light profiles of spatially well-resolved, nearby galaxies observed with the Hubble Space Telescope. The algorithm improves on previous techniques in two areas: 1.) by being able to simultaneously fit a galaxy with an arbitrary number of components, and 2.) with optimization in computation speed, suited for working on large galaxy images. 2-D models such as the "Nuker'' law, the Sersic (de Vaucouleurs) profile, an exponential disk, and Gaussian or Moffat functions are used. The azimuthal shapes are generalized ellipses that can fit disky and boxy components. Many galaxies with complex isophotes, ellipticity changes, and position-angle twists can be modeled accurately in 2-D. When examined in detail, even simple-looking galaxies generally require at least three components to be modeled accurately rather than the one or two components more often employed. This is illustrated by way of seven case studies, which include regular and barred spiral galaxies, highly disky lenticular galaxies, and elliptical galaxies displaying various levels of complexities. A useful extension of this algorithm is to accurately extract nuclear point sources in galaxies.

[ascl:1510.005]
GALFORM: Galactic modeling

GALFORM is a semi-analytic model for calculating the formation and evolution of galaxies in hierarchical clustering cosmologies. Using a Monte Carlo algorithm to follow the merging evolution of dark matter haloes with arbitrary mass resolution, it incorporates realistic descriptions of the density profiles of dark matter haloes and the gas they contain. It follows the chemical evolution of gas and stars, and the associated production of dust and includes a detailed calculation of the sizes of discs and spheroids.

[ascl:1408.008]
GALIC: Galaxy initial conditions construction

GalIC (GALaxy Initial Conditions) is an implementation of an iterative method to construct steady state composite halo-disk-bulge galaxy models with prescribed density distribution and velocity anisotropy that can be used as initial conditions for N-body simulations. The code is parallelized for distributed memory based on MPI. While running, GalIC produces "snapshot files" that can be used as initial conditions files. GalIC supports the three file formats ('type1' format, the slightly improved 'type2' format, and an HDF5 format) of the GADGET (ascl:0003.001) code for its output snapshot files.

[ascl:1511.010]
Galileon-Solver: N-body code

Galileon-Solver adds an extra force to PMCode (ascl:9909.001) using a modified Poisson equation to provide a non-linearly transformed density field, with the operations all performed in real space. The code's implicit spherical top-hat assumption only works over fairly long distance averaging scales, where the coarse-grained picture it relies on is a good approximation of reality; it uses discrete Fourier transforms and cyclic reduction in the usual way.

[ascl:1903.010]
GalIMF: Galaxy-wide Initial Mass Function

GalIMF (Galaxy-wide Initial Mass Function) computes the galaxy-wide initial stellar mass function by integrating over a whole galaxy, parameterized by star formation rate and metallicity. The generated stellar mass distribution depends on the galaxy-wide star formation rate (SFR, which is related to the total mass of a galalxy) and the galaxy-wide metallicity. The code can generate a galaxy-wide IMF (IGIMF) and can also generate all the stellar masses within a galaxy with optimal sampling (OSGIMF). To compute the IGIMF or the OSGIMF, the GalIMF module contains all local IMF properties (e.g. the dependence of the stellar IMF on the metallicity, on the density of the star-cluster forming molecular cloud cores), and this software module can, therefore, be also used to obtain only the stellar IMF with various prescriptions, or to investigate other features of the stellar population such as what is the most massive star that can be formed in a star cluster.

[ascl:1711.011]
galkin: Milky Way rotation curve data handler

galkin is a compilation of kinematic measurements tracing the rotation curve of our Galaxy, together with a tool to treat the data. The compilation is optimized to Galactocentric radii between 3 and 20 kpc and includes the kinematics of gas, stars and masers in a total of 2780 measurements collected from almost four decades of literature. The user-friendly software provided selects, treats and retrieves the data of all source references considered. This tool is especially designed to facilitate the use of kinematic data in dynamical studies of the Milky Way with various applications ranging from dark matter constraints to tests of modified gravity.

[ascl:2103.027]
GalLenspy: Reconstruction of mass profile in disc-like galaxies from the gravitational lensing effect

Gallenspy uses the gravitational lensing effect (GLE) to reconstruct mass profiles in disc-like galaxies. The algorithm inverts the lens equation for gravitational potentials with spherical symmetry, in addition to the estimation in the position of the source, given the positions of the images produced by the lens. Gallenspy also computes critical and caustic curves and the Einstein ring.

[ascl:1903.005]
Galmag: Computation of realistic galactic magnetic fields

Galmag computes galactic magnetic fields based on mean field dynamo theory. Written in Python, Galmag allows quick exploration of solutions to the mean field dynamo equation based on galaxy parameters specified by the user, such as the scale height profile and the galaxy rotation curves. The magnetic fields are solenoidal by construction and can be helical.

[ascl:1501.014]
GalPaK 3D: Galaxy parameters and kinematics extraction from 3D data

GalPaK 3D extracts the intrinsic (i.e. deconvolved) galaxy parameters and kinematics from any 3-dimensional data. The algorithm uses a disk parametric model with 10 free parameters (which can also be fixed independently) and a MCMC approach with non-traditional sampling laws in order to efficiently probe the parameter space. More importantly, it uses the knowledge of the 3-dimensional spread-function to return the intrinsic galaxy properties and the intrinsic data-cube. The 3D spread-function class is flexible enough to handle any instrument.

GalPaK 3D can simultaneously constrain the kinematics and morphological parameters of (non-merging, i.e. regular) galaxies observed in non-optimal seeing conditions and can also be used on AO data or on high-quality, high-SNR data to look for non-axisymmetric structures in the residuals.

[ascl:1611.006]
GalPot: Galaxy potential code

GalPot finds the gravitational potential associated with axisymmetric density profiles. The package includes code that performs transformations between commonly used coordinate systems for both positions and velocities (the class OmniCoords), and that integrates orbits in the potentials. GalPot is a stand-alone version of Walter Dehnen's GalaxyPotential C++ code taken from the falcON code in the NEMO Stellar Dynamics Toolbox (ascl:1010.051).

[ascl:1010.028]
GALPROP: Code for Cosmic-ray Transport and Diffuse Emission Production

GALPROP is a numerical code for calculating the propagation of relativistic charged particles and the diffuse emissions produced during their propagation. The GALPROP code incorporates as much realistic astrophysical input as possible together with latest theoretical developments. The code calculates the propagation of cosmic-ray nuclei, antiprotons, electrons and positrons, and computes diffuse γ-rays and synchrotron emission in the same framework. Each run of the code is governed by a configuration file allowing the user to specify and control many details of the calculation. Thus, each run of the code corresponds to a potentially different "model." The code continues to be developed and is available to the scientific community.

[ascl:1411.008]
galpy: Galactic dynamics package

galpy is a python package for galactic dynamics. It supports orbit integration in a variety of potentials, evaluating and sampling various distribution functions, and the calculation of action-angle coordinates for all static potentials.

[ascl:2102.013]
GalRotpy: Parametrize the rotation curve and gravitational potential of disk-like galaxies

GalRotpy models the dynamical mass of disk-like galaxies and makes a parametric fit of the rotation curve by means of the composed gravitational potential of the galaxy. It can be used to check the presence of an assumed mass type component in a observed rotation curve, to determine quantitatively the main mass contribution in a galaxy by means of the mass ratios of a given set of five potentials, and to bound the contribution of each mass component given its gravitational potential parameters.

[ascl:1402.009]
GalSim: Modular galaxy image simulation toolkit

GalSim is a fast, modular software package for simulation of astronomical images. Though its primary purpose is for tests of weak lensing analysis methods, it can be used for other purposes. GalSim allows galaxies and PSFs to be represented in a variety of ways, and can apply shear, magnification, dilation, or rotation to a galaxy profile including lensing-based models from a power spectrum or NFW halo profile. It can write images in regular FITS files, FITS data cubes, or multi-extension FITS files. It can also compress the output files using various compressions including gzip, bzip2, and rice. The user interface is in python or via configuration scripts, and the computations are done in C++ for speed.

[ascl:1711.007]
galstep: Initial conditions for spiral galaxy simulations

galstep generates initial conditions for disk galaxy simulations with GADGET-2 (ascl:0003.001), RAMSES (ascl:1011.007) and GIZMO (ascl:1410.003), including a stellar disk, a gaseous disk, a dark matter halo and a stellar bulge. The first two components follow an exponential density profile, and the last two a Dehnen density profile with gamma=1 by default, corresponding to a Hernquist profile.

[ascl:1711.010]
galstreams: Milky Way streams footprint library and toolkit

galstreams provides a compilation of spatial information for known stellar streams and overdensities in the Milky Way and includes Python tools for visualizing them. ASCII tables are also provided for quick viewing of the stream's footprints using TOPCAT (ascl:1101.010).

[ascl:1304.003]
GALSVM: Automated Morphology Classification

GALSVM is IDL software for automated morphology classification. It was specially designed for high redshift data but can be used at low redshift as well. It analyzes morphologies of galaxies based on a particular family of learning machines called support vector machines. The method can be seen as a generalization of the classical CAS classification but with an unlimited number of dimensions and non-linear boundaries between decision regions. It is fully automated and consequently well adapted to large cosmological surveys.

[ascl:1708.030]
GAMBIT: Global And Modular BSM Inference Tool

GAMBIT Collaboration; Athron, Peter; Balazs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Dickinson, Hugh; Edsjö, Joakim; Farmer, Ben; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Lundberg, Johan; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje Raklev, Are; Ripken, Joachim; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Seo, Seon-Hee; Serra, Nicola; Weniger, Christoph; White, Martin; Wild, Sebastian

GAMBIT (Global And Modular BSM Inference Tool) performs statistical global fits of generic physics models using a wide range of particle physics and astrophysics data. Modules provide native simulations of collider and astrophysics experiments, a flexible system for interfacing external codes (the backend system), a fully featured statistical and parameter scanning framework, and additional tools for implementing and using hierarchical models.

[ascl:1912.012]
GAME: GAlaxy Machine learning for Emission lines

GAME infers different ISM physical properties by analyzing the emission line intensities in a galaxy spectrum. The code is trained with a large library of synthetic spectra spanning many different ISM phases, including HII (ionized) regions, PDRs, and neutral regions. GAME is based on a Supervised Machine Learning algorithm called AdaBoost with Decision Trees as base learner. Given a set of input lines in a spectrum, the code performs a training on the library and then evaluates the line intensities to give a determination of the physical properties. The errors on the input emission line intensities and the uncertainties on the physical properties determinations are also taken into account. GAME infers gas density, column density, far-ultraviolet (FUV, 6–13.6 eV) flux, ionization parameter, metallicity, escape fraction, and visual extinction. A web interface for using the code is available.

[ascl:1612.017]
GAMER: GPU-accelerated Adaptive MEsh Refinement code

GAMER (GPU-accelerated Adaptive MEsh Refinement) serves as a general-purpose adaptive mesh refinement + GPU framework and solves hydrodynamics with self-gravity. The code supports adaptive mesh refinement (AMR), hydrodynamics with self-gravity, and a variety of GPU-accelerated hydrodynamic and Poisson solvers. It also supports hybrid OpenMP/MPI/GPU parallelization, concurrent CPU/GPU execution for performance optimization, and Hilbert space-filling curve for load balance. Although the code is designed for simulating galaxy formation, it can be easily modified to solve a variety of applications with different governing equations. All optimization strategies implemented in the code can be inherited straightforwardly.

[ascl:2104.024]
GAMMA: Relativistic hydro and local cooling on a moving mesh

GAMMA models relativistic hydrodynamics and non-thermal emission on a moving mesh. It uses an arbitrary Lagrangian-Eulerian approach only in the dominant direction of fluid motion to avoid mesh entanglement and associated computational costs. Shock detection, particle injection and local calculation of their evolution including radiative cooling are done at runtime. The package is modular; though it was designed with GRB physics applications in mind, new solvers and geometries can be implemented easily, making GAMMA suitable for a wide range of applications.

[ascl:2109.001]
gammaALPs: Conversion probability between photons and axions/axionlike particles

gammaALPs calculates the conversion probability between photons and axions/axion-like particles in various astrophysical magnetic fields. Though focused on environments relevant to mixing between gamma rays and ALPs, this suite, written in Python, can also be used for broader applications. The code also implements various models of astrophysical magnetic fields, which can be useful for applications beyond ALP searches.

[ascl:1110.007]
GammaLib: Toolbox for High-level Analysis of Astronomical Gamma-ray Data

The GammaLib is a versatile toolbox for the high-level analysis of astronomical gamma-ray data. It is implemented as a C++ library that is fully scriptable in the Python scripting language. The library provides core functionalities such as data input and output, interfaces for parameter specifications, and a reporting and logging interface. It implements instruments specific functionalities such as instrument response functions and data formats. Instrument specific functionalities share a common interface to allow for extension of the GammaLib to include new gamma-ray instruments. The GammaLib provides an abstract data analysis framework that enables simultaneous multi-mission analysis.

[ascl:1711.014]
Gammapy: Python toolbox for gamma-ray astronomy

Gammapy analyzes gamma-ray data and creates sky images, spectra and lightcurves, from event lists and instrument response information; it can also determine the position, morphology and spectra of gamma-ray sources. It is used to analyze data from H.E.S.S., Fermi-LAT, and the Cherenkov Telescope Array (CTA).

[ascl:1105.011]
Ganalyzer: A tool for automatic galaxy image analysis

Ganalyzer is a model-based tool that automatically analyzes and classifies galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large datasets of galaxy images collected by autonomous sky surveys such as SDSS, LSST or DES.

[ascl:1708.012]
GANDALF: Gas AND Absorption Line Fitting

Sarzi, Marc; Falcón-Barroso, Jesús; Davies, Roger L.; Bacon, Roland; Bureau, Martin; Cappellari, Michele; de Zeeuw, P. Tim; Emsellem, Eric; Fathi, Kambiz; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Peletier, Reynier F.

GANDALF (Gas AND Absorption Line Fitting) accurately separates the stellar and emission-line contributions to observed spectra. The IDL code includes reddening by interstellar dust and also returns formal errors on the position, width, amplitude and flux of the emission lines. Example wrappers that make use of pPXF (ascl:1210.002) to derive the stellar kinematics are included.

[ascl:1602.015]
GANDALF: Graphical Astrophysics code for N-body Dynamics And Lagrangian Fluids

GANDALF, a successor to SEREN (ascl:1102.010), is a hybrid self-gravitating fluid dynamics and collisional N-body code primarily designed for investigating star formation and planet formation problems. GANDALF uses various implementations of Smoothed Particle Hydrodynamics (SPH) to perform hydrodynamical simulations of gas clouds undergoing gravitational collapse to form new stars (or other objects), and can perform simulations of pure N-body dynamics using high accuracy N-body integrators, model the intermediate phase of cluster evolution, and provide visualizations via its python interface as well as interactive simulations. Although based on many of the SEREN routines, GANDALF has been largely re-written from scratch in C++ using more optimal algorithms and data structures.

[ascl:1303.027]
GaPP: Gaussian Processes in Python

The algorithm Gaussian processes can reconstruct a function from a sample of data without assuming a parameterization of the function. The GaPP code can be used on any dataset to reconstruct a function. It handles individual error bars on the data and can be used to determine the derivatives of the reconstructed function. The data sample can consist of observations of the function and of its first derivative.

[ascl:1010.049]
Gas-momentum-kinetic SZ cross-correlations

We present a new method for detecting the missing baryons by generating a template for the kinematic Sunyaev-Zel'dovich effect. The template is computed from the product of a reconstructed velocity field with a galaxy field. We provide maps of such templates constructed from SDSS Data Release 7 spectroscopic data (SDSS VAGC sample) along side with their expected two point correlation functions with CMB temperature anisotropies. Codes of generating such coefficients of the two point correlation function are also released to provide users of the gas-momentum map a way to change the parameters such as cosmological parameters, reionization history, ionization parameters, etc.

[ascl:1210.020]
GASGANO: Data File Organizer

GASGANO is a GUI software tool for managing and viewing data files produced by VLT Control System (VCS) and the Data Flow System (DFS). It is developed and maintained by ESO to help its user community manage and organize astronomical data observed and produced by all VLT compliant telescopes in a systematic way. The software understands FITS, PAF, and ASCII files, and Reduction Blocks, and can group, sort, classify, filter, and search data in addition to allowing the user to browse, view, and manage them.

[ascl:1710.019]
GASOLINE: Smoothed Particle Hydrodynamics (SPH) code

Gasoline solves the equations of gravity and hydrodynamics in astrophysical problems, including simulations of planets, stars, and galaxies. It uses an SPH method that features correct mixing behavior in multiphase fluids and minimal artificial viscosity. This method is identical to the SPH method used in the ChaNGa code (ascl:1105.005), allowing users to extend results to problems requiring >100,000 cores. Gasoline uses a fast, memory-efficient O(N log N) KD-Tree to solve Poisson's Equation for gravity and avoids artificial viscosity in non-shocking compressive flows.

[ascl:1610.007]
gatspy: General tools for Astronomical Time Series in Python

Gatspy contains efficient, well-documented implementations of several common routines for Astronomical time series analysis, including the Lomb-Scargle periodogram, the Supersmoother method, and others.

[ascl:1406.018]
GAUSSCLUMPS: Gaussian-shaped clumping from a spectral map

GAUSSCLUMPS decomposes a spectral map into Gaussian-shape clumps. The clump-finding algorithm decomposes a spectral data cube by iteratively removing 3-D Gaussians as representative clumps. GAUSSCLUMPS was originally a separate code distribution but is now a contributed package in GILDAS (ascl:1305.010). A reimplementation can also be found in CUPID (ascl:1311.007).

[ascl:1305.009]
GaussFit: Solving least squares and robust estimation problems

GaussFit solves least squares and robust estimation problems; written originally for reduction of NASA Hubble Space Telescope data, it includes a complete programming language designed especially to formulate estimation problems, a built-in compiler and interpreter to support the programming language, and a built-in algebraic manipulator for calculating the required partial derivatives analytically. The code can handle nonlinear models, exact constraints, correlated observations, and models where the equations of condition contain more than one observed quantity. Written in C, GaussFit includes an experimental robust estimation capability so data sets contaminated by outliers can be handled simply and efficiently.

[ascl:1907.019]
GaussPy: Python implementation of the Autonomous Gaussian Decomposition algorithm

GaussPy implements the Autonomous Gaussian Decomposition (AGD) algorithm, which uses computer vision and machine learning techniques to provide optimized initial guesses for the parameters of a multi-component Gaussian model automatically and efficiently. The speed and adaptability of AGD allow it to interpret large volumes of spectral data efficiently. Although it was initially designed for applications in radio astrophysics, AGD can be used to search for one-dimensional Gaussian (or any other single-peaked spectral profile)-shaped components in any data set. To determine how many Gaussian functions to include in a model and what their parameters are, AGD uses a technique called derivative spectroscopy. The derivatives of a spectrum can efficiently identify shapes within that spectrum corresponding to the underlying model, including gradients, curvature and edges.

[ascl:1907.020]
GaussPy+: Gaussian decomposition package for emission line spectra

Riener, Manuel; Kainulainen, Jouni; Henshaw, Jonathan D.; Orkisz, Jan H.; Murray, Claire E.; Beuther, Henrik

GaussPy+ is a fully automated Gaussian decomposition package for emission line spectra. It is based on GaussPy (ascl:1907.019) and offers several improvements, including automating preparatory steps and providing an accurate noise estimation, improving the fitting routine, and providing a routine to refit spectra based on neighboring fit solutions. GaussPy+ handles complex emission and low to moderate signal-to-noise values.

[ascl:1710.014]
GBART: Determination of the orbital elements of spectroscopic binaries

GBART is an improved version of the code for determining the orbital elements for spectroscopic binaries originally written by Bertiau & Grobben (1968).

[ascl:1908.006]
GBKFIT: Galaxy kinematic modeling

GBKFIT performs galaxy kinematic modeling. It can be used to extract morphological and kinematical properties of galaxies by fitting models to spatially resolved kinematic data. The software can also take beam smearing into account by using the knowledge of the line and point spread functions. GBKFIT can take advantage of many-core and massively parallel architectures such as multi-core CPUs and Graphics Processing Units (GPUs), making it suitable for modeling large-scale surveys of thousands of galaxies within a very seasonable time frame. GBKFIT features an extensible object-oriented architecture that supports arbitrary models and optimization techniques in the form of modules; users can write custom modules without modifying GBKFIT’s source code. The software is written in C++ and conforms to the latest ISO standards.

[ascl:1303.019]
GBTIDL: Reduction and Analysis of GBT Spectral Line Data

GBTIDL is an interactive package for reduction and analysis of spectral line data taken with the Robert C. Byrd Green Bank Telescope (GBT). The package, written entirely in IDL, consists of straightforward yet flexible calibration, averaging, and analysis procedures (the "GUIDE layer") modeled after the UniPOPS and CLASS data reduction philosophies, a customized plotter with many built-in visualization features, and Data I/O and toolbox functionality that can be used for more advanced tasks. GBTIDL makes use of data structures which can also be used to store intermediate results. The package consumes and produces data in GBT SDFITS format. GBTIDL can be run online and have access to the most recent data coming off the telescope, or can be run offline on preprocessed SDFITS files.

[ascl:1811.018]
gdr2_completeness: GaiaDR2 data retrieval and manipulation

gdr2_completeness queries Gaia DR2 TAP services and divides the queries into sub-queries chunked into arbitrary healpix bins. Downloaded data are formatted into arrays. Internal completeness is calculated by dividing the total starcount and starcounts with an applied cut (*e.g.*, radial velocity measurement and good parallax). Independent determination of the external GDR2 completeness per healpix (level 6) and G magnitude bin (3 coarse bins: 8-12,12-15,15-18) is inferred from a crossmatch with 2MASS data. The overall completeness of a specific GDR2 sample can be approximated by multiplying the internal with the external completeness map, which is useful when data are compared to models thereof. Jupyter notebooks showcasing both utilities enable the user to easily construct the overall completeness for arbitrary samples of the GDR2 catalogue.

[ascl:1010.079]
Geant4: A Simulation Toolkit for the Passage of Particles through Matter

Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics.

[ascl:1608.006]
Gemini IRAF: Data reduction software for the Gemini telescopes

The Gemini IRAF package processes observational data obtained with the Gemini telescopes. It is an external package layered upon IRAF and supports data from numerous instruments, including FLAMINGOS-2, GMOS-N, GMOS-S, GNIRS, GSAOI, NIFS, and NIRI. The Gemini IRAF package is organized into sub-packages; it contains a generic tools package, "gemtools", along with instrument-specific packages. The raw data from the Gemini facility instruments are stored as Multi-Extension FITS (MEF) files. Therefore, all the tasks in the Gemini IRAF package, intended for processing data from the Gemini facility instruments, are capable of handling MEF files.

[ascl:1007.003]
GEMINI: A toolkit for analytical models of two-point correlations and inhomogeneous structure formation

Gemini is a toolkit for analytical models of two-point correlations and inhomogeneous structure formation. It extends standard Press-Schechter theory to inhomogeneous situations, allowing a realistic, analytical calculation of halo correlations and bias.

[ascl:1212.005]
General complex polynomial root solver

This general complex polynomial root solver, implemented in Fortran and further optimized for binary microlenses, uses a new algorithm to solve polynomial equations and is 1.6-3 times faster than the ZROOTS subroutine that is commercially available from Numerical Recipes, depending on application. The largest improvement, when compared to naive solvers, comes from a fail-safe procedure that permits skipping the majority of the calculations in the great majority of cases, without risking catastrophic failure in the few cases that these are actually required.

[ascl:2006.020]
GenetIC: Initial conditions generator for cosmological simulations

GenetIC generates initial conditions for cosmological simulations, especially for zoom simulations of galaxies. It provides support for "genetic modifications" of specific attributes of simulations to allow study of the impact of such modifications on the outcomes; the code can also produce constrained initial conditions.

[ascl:1812.014]
GENGA: Gravitational ENcounters with Gpu Acceleration

GENGA (Gravitational ENcounters with Gpu Acceleration) integrates planet and planetesimal dynamics in the late stage of planet formation and stability analyses of planetary systems. It uses mixed variable integration when the motion is a perturbed Kepler orbit and combines this with a direct N-body Bulirsch-Stoer method during close encounters. It supports three simulation modes: 1.) integration of up to 2048 massive bodies; 2.) integration with up to a million test particles; and 3.) parallel integration of a large number of individual planetary systems.

[ascl:1706.006]
GenPK: Power spectrum generator

GenPK generates the 3D matter power spectra for each particle species from a Gadget snapshot. Written in C++, it requires both FFTW3 and GadgetReader.

[ascl:1011.015]
Geokerr: Computing Photon Orbits in a Kerr Spacetime

Relativistic radiative transfer problems require the calculation of photon trajectories in curved spacetime. Programmed in Fortran, Geokerr uses a novel technique for rapid and accurate calculation of null geodesics in the Kerr metric. The equations of motion from the Hamilton-Jacobi equation are reduced directly to Carlson's elliptic integrals, simplifying algebraic manipulations and allowing all coordinates to be computed semi-analytically for the first time.

[ascl:1511.015]
George: Gaussian Process regression

George is a fast and flexible library, implemented in C++ with Python bindings, for Gaussian Process regression useful for accounting for correlated noise in astronomical datasets, including those for transiting exoplanet discovery and characterization and stellar population modeling.

[ascl:1412.012]
GeoTOA: Geocentric TOA tools

GeoTOA computes the pulse times of arrival (TOAs) at an observatory (or spacecraft) from unbinned Fermi LAT data. Written in Python, the software requires NumPy, matplotlib, SciPy, Fermitools (ascl:1905.011), and Tempo2 (ascl:1210.015).

[ascl:1512.002]
GetData: A filesystem-based, column-oriented database format for time-ordered binary data

The GetData Project is the reference implementation of the Dirfile Standards, a filesystem-based, column-oriented database format for time-ordered binary data. Dirfiles provide a fast, simple format for storing and reading data, suitable for both quicklook and analysis pipelines. GetData provides a C API and bindings exist for various other languages. GetData is distributed under the terms of the GNU Lesser General Public License.

[ascl:1910.018]
GetDist: Monte Carlo sample analyzer

GetDist analyzes Monte Carlo samples, including correlated samples from Markov Chain Monte Carlo (MCMC). It offers a point and click GUI for selecting chain files, viewing plots, marginalized constraints, and LaTeX tables, and includes a plotting library for making custom publication-ready 1D, 2D, 3D-scatter, triangle and other plots. Its convergence diagnostics include correlation length and diagonalized Gelman-Rubin statistics, and the optimized kernel density estimation provides an automated optimal bandwidth choice for 1D and 2D densities with boundary and bias correction. It is available as a standalong package and with CosmoMC (ascl:1106.025).

[ascl:1705.007]
getimages: Background derivation and image flattening method

*getimages* performs background derivation and image flattening for high-resolution images obtained with space observatories. It is based on median filtering with sliding windows corresponding to a range of spatial scales from the observational beam size up to a maximum structure width X. The latter is a single free parameter of *getimages* that can be evaluated manually from the observed image. The median filtering algorithm provides a background image for structures of all widths below X. The same median filtering procedure applied to an image of standard deviations derived from a background-subtracted image results in a flattening image. Finally, a flattened image is computed by dividing the background-subtracted by the flattening image. Standard deviations in the flattened image are now uniform outside sources and filaments. Detecting structures in such radically simplified images results in much cleaner extractions that are more complete and reliable. *getimages* also reduces various observational and map-making artifacts and equalizes noise levels between independent tiles of mosaicked images. The code (a Bash script) uses FORTRAN utilities from *getsources* (ascl:1507.014), which must be installed.

[ascl:2012.001]
getsf: Multi-scale, multi-wavelength sources and filaments extraction

getsf extracts sources and filaments in astronomical images by separating their structural components, and is designed to handle multi-wavelength sets of images and very complex filamentary backgrounds. The method spatially decomposes the original images and separates the structural components of sources and filaments from each other and from their backgrounds, flattening their resulting images. It spatially decomposes the flattened components, combines them over wavelengths, and detects the positions of sources and skeletons of filaments. Finally, getsf measures the detected sources and filaments and creates the output catalogs and images. This universal and fully automated method has a single user-definable free parameter, which reduces to a minimum dependence of its results on the human factor.

[ascl:1507.014]
getsources: Multi-scale, multi-wavelength source extraction

*getsources* is a powerful multi-scale, multi-wavelength source extraction algorithm. It analyzes fine spatial decompositions of original images across a wide range of scales and across all wavebands, cleans those single-scale images of noise and background, and constructs wavelength-independent single-scale detection images that preserve information in both spatial and wavelength dimensions. *getsources* offers several advantages over other existing methods of source extraction, including the filtering out of irrelevant spatial scales to improve detectability, especially in the crowded regions and for extended sources, the ability to combine data over all wavebands, and the full automation of the extraction process.

[ascl:1608.014]
gevolution: General Relativity Cosmological N-body code for evolution of large scale structures

The N-body code *gevolution* complies with general relativity principles at every step; it calculates all six metric degrees of freedom in Poisson gauge. N-body particles are evolved by solving the geodesic equation written in terms of a canonical momentum to remain valid for relativistic particles. *gevolution* can be extended to include different kinds of dark energy or modified gravity models, going beyond the usually adopted quasi-static approximation. A weak field expansion is the central element of *gevolution*; this permits the code to treat settings in which no strong gravitational fields appear, including arbitrary scenarios with relativistic sources as long as gravitational fields are not very strong. The framework is well suited for cosmology, but may also be useful for astrophysical applications with moderate gravitational fields where a Newtonian treatment is insufficient.

[ascl:1509.008]
GFARGO: FARGO for GPU

GFARGO is a GPU version of FARGO (ascl:1102.017). It is written in C and C for CUDA and runs only on NVIDIA’s graphics cards. Though it corresponds to the standard, isothermal version of FARGO, not all functionalities of the CPU version have been translated to CUDA. The code is available in single and double precision versions, the latter compatible with FERMI architectures. GFARGO can run on a graphics card connected to the display, allowing the user to see in real time how the fields evolve.

[ascl:1510.001]
GGADT: Generalized Geometry Anomalous Diffraction Theory

GGADT uses anomalous diffraction theory (ADT) to compute the differential scattering cross section (or the total cross sections as a function of energy) for a specified grain of arbitrary geometry (natively supports spheres, ellipsoids, and clusters of spherical monomers). It is written in Fortran 95. ADT is valid when the grain is large compared to the wavelength of incident light. GGADT can calculate either the integrated cross sections (absorption, scattering, extinction) as a function of energy, or it can calculate the differential scattering cross section as a function of scattering angle.

[ascl:2104.018]
GGchem: Fast thermo-chemical equilibrium code

GGchem is a fast thermo-chemical equilibrium code with or without equilibrium condensation down to 100K. It can handle up to 40 elements (H, ..., Zr, and W), up to 1155 molecules, and up to 200 condensates (solids and liquids) from NIST-JANAF and SUPCRTBL. It offers a customized selection of elements, molecules, and condensates. The Fortran-90 code is very fast, and has a stable iterative solution scheme based on Newton-Raphson.

[ascl:2110.012]
GGCHEMPY: Gas-Grain CHEMical code for interstellar medium in Python3

GGCHEMPY is efficient for building 1-D, 2-D and 3-D simulations of physical parameters of Planck galactic cold clumps; it provides a graphical user interface and can also be invoked by a Python script. The code initializes the reaction network using input parameters, and then computes the reaction rate coefficients for all reactions. It uses the backward-differentiation formulas method to solve the ordinary differential equations for the integration. The modeled results are saved and can be directly passed to a Python dictionary for analysis and plotting.

[ascl:2103.006]
ggm: Gaussian gradient magnitude filtering of astronomical images

Ggm contains useful utilities for Gaussian gradient filtering of astronomical FITS images. It applies the Gaussian gradient magnitude filter to an input fits image, using a particular scale, sigma, in pixels. ggm cosmetically hides point sources in fits images by filling point sources with random values from the surrounding pixel region. It also provides an interactive tool to combine FITS images filtered on different scales.

[ascl:1112.008]
GGobi: A data visualization system

GGobi is an open source visualization program for exploring high-dimensional data. It provides highly dynamic and interactive graphics such as tours, as well as familiar graphics such as the scatterplot, barchart and parallel coordinates plots. Plots are interactive and linked with brushing and identification.

[ascl:1107.002]
GIBIS: Gaia Instrument and Basic Image Simulator

GIBIS is a pixel-level simulator of the Gaia mission. It is intended to simulate how the Gaia instruments will observe the sky, using realistic simulations of the astronomical sources and of the instrumental properties. It is a branch of the global Gaia Simulator under development within the Gaia DPAC CU2 Group (Data Simulations). Access is currently restricted to Gaia DPAC teams.

[ascl:1112.005]
GIDGET: Gravitational Instability-Dominated Galaxy Evolution Tool

Observations of disk galaxies at z~2 have demonstrated that turbulence driven by gravitational instability can dominate the energetics of the disk. GIDGET is a 1D simulation code, which we have made publicly available, that economically evolves these galaxies from z~2 to z~0 on a single CPU in a matter of minutes, tracking column density, metallicity, and velocity dispersions of gaseous and multiple stellar components. We include an H$_2$ regulated star formation law and the effects of stellar heating by transient spiral structure. We use this code to demonstrate a possible explanation for the existence of a thin and thick disk stellar population and the age-velocity dispersion correlation of stars in the solar neighborhood: the high velocity dispersion of gas in disks at z~2 decreases along with the cosmological accretion rate, while at lower redshift, the dynamically colder gas forms the low velocity dispersion stars of the thin disk.

[ascl:1305.010]
GILDAS: Grenoble Image and Line Data Analysis Software

GILDAS is a collection of software oriented toward (sub-)millimeter radioastronomical applications (either single-dish or interferometer). It has been adopted as the IRAM standard data reduction package and is jointly maintained by IRAM & CNRS. GILDAS contains many facilities, most of which are oriented towards spectral line mapping and many kinds of 3-dimensional data. The code, written in Fortran-90 with a few parts in C/C++ (mainly keyboard interaction, plotting, widgets), is easily extensible.

[ascl:1004.001]
GIM2D: Galaxy IMage 2D

GIM2D (Galaxy IMage 2D) is an IRAF/SPP package written to perform detailed bulge/disk decompositions of low signal-to-noise images of distant galaxies in a fully automated way. GIM2D takes an input image from HST or ground-based telescopes and outputs a galaxy-subtracted image as well as a catalog of structural parameters.

[ascl:1303.020]
Ginga: Flexible FITS viewer

Ginga is a viewer for astronomical data FITS (Flexible Image Transport System) files; the viewer centers around a FITS display widget which supports zooming and panning, color and intensity mapping, a choice of several automatic cut levels algorithms and canvases for plotting scalable geometric forms. In addition to this widget, the FITS viewer provides a flexible plugin framework for extending the viewer with many different features. A fairly complete set of "standard" plugins are provided for expected features of a modern viewer: panning and zooming windows, star catalog access, cuts, star pick/fwhm, thumbnails, and others. This viewer was written by software engineers at Subaru Telescope, National Astronomical Observatory of Japan, and is in use at that facility.

[ascl:1109.018]
GIPSY: Groningen Image Processing System

GIPSY is an acronym of Groningen Image Processing SYstem. It is a highly interactive software system for the reduction and display of astronomical data. It supports multi-tasking using a versatile user interface, it has an advanced data structure, a powerful script language and good display facilities based on the X Window system.

GIPSY consists of a number of components which can be divided into a number of classes: 1.) The user interfaces. Currently two user interfaces are available; one for interactive work and one for batch processing. 2.) The data structure. 3.) The display utilities. 4.) The application programs. These are the majority of programs.

GIPSY was designed originally for the reduction of interferometric data from the Westerbork Synthesis Radio Telescope, but in its history of more than 20 years it has grown to a system capable of handling data from many different instruments (e.g. TAURUS, IRAS etc.).

[ascl:1810.012]
GiRaFFE: General relativistic force-free electrodynamics code

GiRaFFE leverages the Einstein Toolkit's (ascl:1102.014) highly-scalable infrastructure to create large-scale simulations of magnetized plasmas in strong, dynamical spacetimes on adaptive-mesh refinement (AMR) grids. It is based on IllinoisGRMHD (ascl:2004.003), a user-friendly, open-source, dynamical-spacetime GRMHD code, and is highly scalable, to tens of thousands of cores.

[ascl:1907.025]
GIST: Galaxy IFU Spectroscopy Tool

Bittner, A.; Falcón-Barroso, J.; Nedelchev, B.; Dorta, A.; Gadotti, D. A.; Sarzi, M.; Molaeinezhad, A.; Iodice, E.; Rosado-Belza, D.; de Lorenzo-Cáceres, A.; Fragkoudi, F.; Galán-de Anta, P. M.; Husemann, B.; Méndez-Abreu, J.; Neumann, J.; Pinna, F.; Querejeta, M.; Sánchez-Blázquez, P.; Seidel, M. K.

GIST (Galaxy IFU Spectroscopy Tool) provides a convenient all-in-one framework for the scientific analysis of fully reduced, (integral-field) spectroscopic data, conducting all the steps from the preparation of input data to the scientific analysis and to the production of publication-quality plots. In its basic set-up, the GIST pipeline extracts stellar kinematics, performs an emission-line analysis, and derives stellar population properties from full spectral fitting and via the measurement of absorption line-strength indices by exploiting pPXF (ascl:1210.002)and GandALF routines. The pipeline is not specific to any instrument or analysis technique, and includes a dedicated visualization routine with a sophisticated graphical user interface for fully interactive plotting of all measurements, spectra, fits, and residuals, as well as star formation histories and the weight distribution of the models.

[ascl:1410.003]
GIZMO: Multi-method magneto-hydrodynamics+gravity code

GIZMO is a flexible, multi-method magneto-hydrodynamics+gravity code that solves the hydrodynamic equations using a variety of different methods. It introduces new Lagrangian Godunov-type methods that allow solving the fluid equations with a moving particle distribution that is automatically adaptive in resolution and avoids the advection errors, angular momentum conservation errors, and excessive diffusion problems that seriously limit the applicability of “adaptive mesh” (AMR) codes, while simultaneously avoiding the low-order errors inherent to simpler methods like smoothed-particle hydrodynamics (SPH). GIZMO also allows the use of SPH either in “traditional” form or “modern” (more accurate) forms, or use of a mesh. Self-gravity is solved quickly with a BH-Tree (optionally a hybrid PM-Tree for periodic boundaries) and on-the-fly adaptive gravitational softenings. The code is descended from P-GADGET, itself descended from GADGET-2 (ascl:0003.001), and many of the naming conventions remain (for the sake of compatibility with the large library of GADGET work and analysis software).

[ascl:2002.015]
GizmoAnalysis: Read and analyze Gizmo simulations

GizmoAnalysis reads and analyzes N-body simulations run with the Gizmo code (ascl:1410.003). Written in Python, it was developed primarily to analyze FIRE simulations, though it is usable with any Gizmo snapshot files. It offers the following functionality: reads snapshot files and converts particle data to physical units; provides a flexible dictionary class to store particle data and compute derived quantities on the fly; plots images and properties of particles; and generates region files for input to MUSIC (ascl:1311.011) to generate cosmological zoom-in initial conditions. GizmoAnalysis also computes rates of supernovae and stellar winds, including their nucleosynthetic yields, as used in FIRE simulations. The software package includes a tutorial in a Jupyter notebook.

[ascl:1805.025]
GLACiAR: GaLAxy survey Completeness AlgoRithm

GLACiAR (GaLAxy survey Completeness AlgoRithm) estimates the completeness and selection functions in galaxy surveys. Tailored for multiband imaging surveys aimed at searching for high-redshift galaxies through the Lyman Break technique, the code can nevertheless be applied broadly. GLACiAR generates artificial galaxies that follow Sérsic profiles with different indexes and with customizable size, redshift and spectral energy distribution properties, adds them to input images, and measures the recovery rate.

[ascl:1812.002]
GLADIS: GLobal Accretion Disk Instability Simulation

GLADIS (GLobal Accretion Disk Instability Simulation) computes the time-dependent evolution of a black hole accretion disk, in one-dimensional, axisymmetric, vertically integrated scheme. The code solves two partial-differential equations of hydrodynamics for surface density and temperature evolution, *i.e.*, given by viscous diffusion and energy conservation. Accretion disks can be subject to radiation-pressure instability if the stress tensor is proportional to the total (gas plus radiation) pressure. In the gas-pressure dominated case there is no instability. An intermediate case is provided in the code by the square root of the gas and total pressures. GLADIS is parallelized with MPI, and sample .ini and run command files are provided with the code.

[ascl:1010.012]
glafic: Software Package for Analyzing Gravitational Lensing

glafic is a public software package for analyzing gravitational lensing. It offers many features including computations of various lens properties for many mass models, solving the lens equation using an adaptive grid algorithm, simulations of lensed extended images with PSF convolved, and efficient modeling of observed strong lens systems.

[ascl:1806.009]
GLASS: Parallel, free-form gravitational lens modeling tool and framework

GLASS models strong gravitational lenses. It produces an ensemble of possible models that fit the observed input data and conform to certain constraints specified by the user. GLASS makes heavy use of the numerical routines provided by the numpy and scipy packages as well as the linear programming package GLPK. This latter package, and its Python interface, is provided with GLASS and installs automatically in the GLASS build directory.

[ascl:2102.030]
GLEAM: Galaxy Line Emission and Absorption Modeling

GLEAM (Galaxy Line Emission and Absorption Modeling) fits Gaussian models to emission and absorption lines in large samples of 1D galaxy spectra. The code is tailored to work well without much human interaction on optical and infrared spectra in a wide range of instrument setups and signal-to-noise regimes. gleam will create a fits table with Gaussian line measurements, including central wavelength, width, height and amplitude, as well as estimates for the continuum under the line and the line flux, luminosity, equivalent width and velocity width. gleam will also, optionally, make plots of the spectrum with fitted lines overlaid.

[ascl:2106.019]
GLEMuR: GPU-based Lagrangian mimEtic Magnetic Relaxation

GLEMuR (Gpu-based Lagrangian mimEtic Magnetic Relaxation) is a finite difference Lagrangian code which uses mimetic differential operators and runs on Nvidia GPUs. Its main purpose is to study the relaxation of magnetic relaxation in environments of zero resistivity and viscosity; it preserves the magnetic flux and the topology of magnetic field lines. The use of mimetic operators for the spatial derivatives improve accuracy for high distortions of the grid, and the final state of the simulation approximates a force-free state with a significantly higher accuracy. Note, however, that GLEMuR is not a general purpose equation solver and the full magnetohydrodynamics equations are not implemented.

[ascl:1103.006]
GLESP 2.0: Gauss-Legendre Sky Pixelization for CMB Analysis

Doroshkevich, A. G.; Naselsky, P. D.; Verkhodanov, O. V.; Novikov, D. I.; Turchaninov, V. I.; Novikov, I. D.; Christensen, P. R.; Chiang, L.-Y.

GLESP is a pixelization scheme for the cosmic microwave background (CMB) radiation maps. This scheme is based on the Gauss-Legendre polynomials zeros and allows one to create strict orthogonal expansion of the map.

[ascl:1802.010]
Glimpse: Sparsity based weak lensing mass-mapping tool

Glimpse, also known as Glimpse2D, is a weak lensing mass-mapping tool that relies on a robust sparsity-based regularization scheme to recover high resolution convergence from either gravitational shear alone or from a combination of shear and flexion. Including flexion allows the supplementation of the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map. To preserve all available small scale information, Glimpse avoids any binning of the irregularly sampled input shear and flexion fields and treats the mass-mapping problem as a general ill-posed inverse problem, regularized using a multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators.

[ascl:1110.008]
Glnemo2: Interactive Visualization 3D Program

Glnemo2 is an interactive 3D visualization program developed in C++ using the OpenGL library and Nokia QT 4.X API. It displays in 3D the particles positions of the different components of an nbody snapshot. It quickly gives a lot of information about the data (shape, density area, formation of structures such as spirals, bars, or peanuts). It allows for in/out zooms, rotations, changes of scale, translations, selection of different groups of particles and plots in different blending colors. It can color particles according to their density or temperature, play with the density threshold, trace orbits, display different time steps, take automatic screenshots to make movies, select particles using the mouse, and fly over a simulation using a given camera path. All these features are accessible from a very intuitive graphic user interface.

Glnemo2 supports a wide range of input file formats (Nemo, Gadget 1 and 2, phiGrape, Ramses, list of files, realtime gyrfalcON simulation) which are automatically detected at loading time without user intervention. Glnemo2 uses a plugin mechanism to load the data, so that it is easy to add a new file reader. It's powered by a 3D engine which uses the latest OpenGL technology, such as shaders (glsl), vertex buffer object, frame buffer object, and takes in account the power of the graphic card used in order to accelerate the rendering. With a fast GPU, millions of particles can be rendered in real time. Glnemo2 runs on Linux, Windows (using minGW compiler), and MaxOSX, thanks to the QT4API.

[ascl:1011.010]
Global Sky Model (GSM): A Model of Diffuse Galactic Radio Emission from 10 MHz to 100 GHz

de Oliveira-Costa, Angelica; Tegmark, Max; Gaensler, B. M.; Jonas, Justin; Landecker, T. L.; Reich, Patricia

Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. Cosmic Microwave Background experiments have focused on frequencies > 10 GHz, whereas 21 cm tomography of the high redshift universe will mainly focus on < 0.2 GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.4 GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multi-frequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 & 408 MHz and 1.4, 2.3, 23, 33, 41, 61, 94 GHz) to an accuracy around 1%-10% depending on frequency and sky region. The data compilation and software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available in the archive file at the link below.

[ascl:2104.028]
globalemu: Global (sky-averaged) 21-cm signal emulation

globalemu emulates the Global or sky averaged 21-cm signal and the associated neutral fraction history. The code can train a network on your own Global 21-cm signal or neutral fraction simulations using the built-in globalemu pre-processing techniques. It also features a GUI that can be invoked from the command line and used to explore how the structure of the Global 21-cm signal varies with the values of the astrophysical inputs.

[ascl:2109.018]
GLoBES: General Long Baseline Experiment Simulator

GLoBES simulates long baseline neutrino oscillation experiments. The package features full incorporation of correlations and degeneracies in the oscillation parameter space, advanced routines for the treatment of arbitrary systematical errors, and user-defined priors, which allowsn for the inclusion of arbitrary external physical information. Its use of AEDL, the Abstract Experiment Definition Language, provides an easy way to define experimental setups. GLoBES also provides an interface for the simulation of non-standard physics, and offers predefined setups for many experiments, including Superbeams, Beta Beams, Neutrino factories, Reactors, and various detector technologies.

[ascl:1807.019]
GLS: Generalized Lomb-Scargle periodogram

The Lomb-Scargle periodogram is a common tool in the frequency analysis of unequally spaced data equivalent to least-squares fitting of sine waves. GLS is a solution for the generalization to a full sine wave fit, including an offset and weights (χ2 fitting). Compared to the Lomb-Scargle periodogram, GLS is superior as it provides more accurate frequencies, is less susceptible to aliasing, and gives a much better determination of the spectral intensity.

[ascl:1402.002]
Glue: Linked data visualizations across multiple files

Glue, written in Python, links visualizations of scientific datasets across many files, allowing for interactive, linked statistical graphics of multiple files. It supports many file formats including common image formats (jpg, tiff, png), ASCII tables, astronomical image and table formats (FITS, VOT, IPAC), and HDF5. Custom data loaders can also be easily added. Glue is highly scriptable and extendable.

[ascl:1710.015]
GMCALab: Generalized Morphological Component Analysis

GMCALab solves Blind Source Separation (BSS) problems from multichannel/multispectral/hyperspectral data. In essence, multichannel data provide different observations of the same physical phenomena (e.g. multiple wavelengths), which are modeled as a linear combination of unknown elementary components or sources. Written as a set of Matlab toolboxes, it provides a generic framework that can be extended to tackle different matrix factorization problems.

[ascl:1708.013]
GMM: Gaussian Mixture Modeling

GMM (Gaussian Mixture Modeling) tests the existence of bimodality in globular cluster color distributions. GMM uses three indicators to distinguish unimodal and bimodal distributions: the kurtosis of the distribution, the separation of the peaks, and the probability of obtaining the same χ2 from a unimodal distribution.

[ascl:2001.015]
gnm: The MCMC Jagger

gnm is an implementation of the affine-invariant sampler for Markov chain Monte Carlo (MCMC) that uses the Gauss-Newton-Metropolis (GNM) Algorithm. The GNM algorithm is specialized in sampling highly non-linear posterior probability distribution functions of the form exp(-||f(x)||^2/2). The code includes dynamic hyper-parameter optimization to increase performance of the sampling; other features include the Jacobian tester and an error bars creator.

[ascl:1801.009]
Gnuastro: GNU Astronomy Utilities

Gnuastro (GNU Astronomy Utilities) manipulates and analyzes astronomical data. It is an official GNU package of a large collection of programs and C/C++ library functions. Command-line programs perform arithmetic operations on images, convert FITS images to common types like JPG or PDF, convolve an image with a given kernel or matching of kernels, perform cosmological calculations, crop parts of large images (possibly in multiple files), manipulate FITS extensions and keywords, and perform statistical operations. In addition, it contains programs to make catalogs from detection maps, add noise, make mock profiles with a variety of radial functions using monte-carlo integration for their centers, match catalogs, and detect objects in an image among many other operations. The command-line programs share the same basic command-line user interface for the comfort of both the users and developers. Gnuastro is written to comply fully with the GNU coding standards and integrates well with all Unix-like operating systems. This enables astronomers to expect a fully familiar experience in the source code, building, installing and command-line user interaction that they have seen in all the other GNU software that they use. Gnuastro's extensive library is included for users who want to build their own unique programs.

[ascl:2011.016]
GoFish: Molecular line detections in protoplanetary disks

GoFish exploits the known rotation of a protoplanetary disk to shift all emission to a common line center in order to stack them, increasing the signal-to-noise of the spectrum, detecting weaker lines, or super-sampling the spectrum to better resolve the line profile.

[ascl:1210.003]
GOSSIP: SED fitting code

GOSSIP fits the electro-magnetic emission of an object (the SED, Spectral Energy Distribution) against synthetic models to find the simulated one that best reproduces the observed data. It builds-up the observed SED of an object (or a large sample of objects) combining magnitudes in different bands and eventually a spectrum; then it performs a chi-square minimization fitting procedure versus a set of synthetic models. The fitting results are used to estimate a number of physical parameters like the Star Formation History, absolute magnitudes, stellar mass and their Probability Distribution Functions.

[ascl:2005.011]
gotetra: Cosmic velocity fields tracking through the use of tetrahedra

gotetra uses phase-space tesselation techniques to extract information about cosmological N-body simulations. The key applications of this Go-based code are the measurement of splashback shells around halos and the generation of high resolution images of density fields. The package includes routines to generates 3D and 2D (projected) density fields from a particle snapshot generated by a cosmological N-body simulation, measure density along lines of sight from the center of halos, and compresse the position space data from cosmological N-body simulations. Included are two helper libraries with functions for calculating cosmological quantities and computing a number of useful mathematical functions.

[ascl:2011.008]
GOTHIC: Double nuclei galaxy detector

GOTHIC (Graph-bOosTed iterated HIll Climbing) detects whether a given image of a galaxy has characteristic features of a double nuclei galaxy (DNG). Galaxy interactions and mergers play a crucial role in the hierarchical growth of structure in the universe; galaxy mergers can lead to the formation of elliptical galaxies and larger disk galaxies, as well as drive galaxy evolution through star formation and nuclear activity. During mergers, the nuclei of the individual galaxies come closer and finally form a double nuclei galaxy. Although mergers are common, the detection of double-nuclei galaxies (DNGs) is rare and fairly serendipitous. Their properties can help us understand the formation of supermassive black hole (SMBH) binaries, dual active galactic nuclei (DAGN) and the associated feedback effects. GOTHIC provides an automatic and systematic way to survey data for the discovery of double nuclei galaxies.

[ascl:1210.001]
GP2PCF: Brute-force computation of 2-point correlation functions

The two-point correlation function is a simple statistic that quantifies the clustering of a given distribution of objects. In studies of the large scale structure of the Universe, it is an important tool containing information about the matter clustering and the evolution of the Universe at different cosmological epochs. A classical application of this statistic is the galaxy-galaxy correlation function to find constraints on the parameter Omega_m or the location of the baryonic acoustic oscillation peak. This calculation, however, is very expensive in terms of computer power and Graphics Processing Units provide one solution for efficient analysis of the increasingly larger galaxy surveys that are currently taking place.

GP2PCF is a public code in CUDA for performing this computation; with a single GPU board it is possible to achieve 120-fold speedups with respect to a standard implementation in C running on a single CPU. With respect to other solutions such as k-trees the improvement is of a factor of a few retaining full precision. The speedup is comparable to running in parallel in a cluster of O(100) cores.

[ascl:1512.006]
GPC: General Polygon Clipper library

The University of Manchester GPC library is a flexible and highly robust polygon set operations library for use with C, C#, Delphi, Java, Perl, Python, Haskell, Lua, VB.Net and other applications. It supports difference, intersection, exclusive-or and union clip operations, and polygons may be comprised of multiple disjoint contours. Contour vertices may be given in any order - clockwise or anticlockwise, and contours may be convex, concave or self-intersecting, and may be nested (i.e. polygons may have holes). Output may take the form of either polygon contours or tristrips, and hole and external contours are differentiated in the result. GPC is free for non-profit and educational use; a Commercial Use License is required for commercial use.

Internet Archive link provided for archival purposes; per its website, GPC is no longer distributed or available as of August 2020.

Would you like to view a random code?