Modelling dimensions As I have said in the blog on fifth dimension, when we talk dimensions, the first thought that comes to mind is space dimensions. The x, y and z co-ordinate system. Any new dimensions identified are added to this to extend this view. But, we need to ask ourselves why should new dimensions be an extension to these three spatial dimensions? The fact that an object in space can be adequately located by specifying 3 numbers is not going to change by adding more dimensions to it. It should be noted that adding a new dimension to it indicates that we are changing the definition of space. Is this what we want? So, for example, by adding time as a dimension of space and calling it the fourth dimension implies that space itself extends into a fourth dimension. Meaning, rather than indicating a point in space by co-ordinates (x, y, z) we are saying it has to be (x, y, z, t). Thus space itself is extended to be having a time component rather than the object represented having a change.

The question we have to ask ourselves is: “Does an object occupy a location in space and time?” or “Does an object occupy a location in space and the space properties of the object change to form the time dimension?” While the distinction seems very subtle, it makes a huge difference to the model of these two scenarios. If the first is true, then we model a spacetime continuum as is done in modern science. But, if the second is true, then what emerges is not a spacetime continuum. It is an object that has a location in space with properties that can vary and hence form time. The x, y, z co-ordinates then become the properties that indicate the location in space and hence become the sub-dimensions to the dimension of space. So, an object is located as (L) – (location) where Location is a fifth dimension computation based on 3 sub-dimensions of (x, y, z) and t = (L) i.e., the state of the object is ‘t’ which is represented by the location L, where there is only space dimension.

Now, let’s look at what will happen if we add new dimensions to these systems. Let’s take the example of uncertainty as a dimension. In the first type of definition where the existing dimensions are extended to include the new dimension, it becomes space-time-uncertainty continuum. So, it becomes (x, y, z, t, p) – p = probability representing uncertainty. But, this representation become unwieldy when we start adding sub-dimensions to uncertainty. So, for example, we wanted to say that the probability of ‘p1’ varies by the entropy of the underlying network ‘e1’, momentum at the location of underlying network ‘m1’ and the path taken by underlying network path ‘pth1’, then we end up with a 7 dimension representation of (x, y, z, t, e, m, pth) and so on it goes on as we add more dimensions. And if the ancient science is to go by, there are 12 such dimensions.

But, let’s say we use the second way of viewing dimensions, where the sub-dimensions of space are not extended, but space is considered as a major dimension with (x, y, z) as minor dimensions. Here to add a new dimension of uncertainty, we would indicate a point as t = (L, p) where L = location of existence in space computed using (x, y, z), p = probability of existence computed using (e, m, pth) and t = is the current change computed. Here, both location and probabilities are the fifth dimension computation from the underlying dimensions and these computations are visible as our reality around us. Thus, the 12 dimensions which ancient science indicates can be grouped as 4 major dimensions with 3 sub-dimensions each. This is what is explained in Surya Siddanta verse: